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superposition of any two identical point groups can 
be treated in a similar way. Table 3 gives the antisym- 
metry groups created by the superposition of a white 
and a black point group of crystallographic symmetry. 

A number of interesting conclusions can be 
obtained from the application of the proposed 
algorithm. These are expressed in the following rules. 

Rule 1: Rotations R being isomorphic to a sym- 
metry operation of the white point group Gw yield a 
dichromatic composite with symmetry described by 
the grey point group D = Gw + Gw 1', where 1' is the 
anti-identity operation. 

Let R = g,, 1' = l'g,,, then the relation RgiR-  ~ = gj 
becomes g~ l '&l 'g~ ~ = l'g~gig~ ~1'= & and, thus, it 
holds for all the elements of the white point group. 
Also, R 2 = g~ l'g,, 1' = g~ ~ G~. Consequently, this case 
corresponds to complete coincidence of the white and 
black point groups and, hence, the dichromatic point 
group is a grey point group isomorphic to the white 
point group. 

Rule 2: If the point group G~ contains a symmetry 
rotation 0 about a direction [xyz], then the rotation 

= 0/2 (and its symmetry equivalent) about the 
direction [xyz], i.e. R = {[xyz]/~}', gives rise to a com- 
posite point group D = Do + DoR -~, where Do is the 
highest-order subgroup of G~ being invariant with R. 

A special case of this rule is the following principle 
given by Pond & Bollmann (1979): 'colour-reversing 
rotation axes, u', can only be evenfold, and arise when 
two ordinary u/2-fold rotation axes coincide and 0 
is 27r/u'. 

Rule 3: For a mirror plane any rotation 0 ~ 180 ° 
along a direction on the plane results in a colour- 
reversing mirror plane (or, in the case of improper 
rotation, in a twofold colour-reversing rotational 
axis), whereas for 0 = 180 ° an mm'2' composite group 
is created. 

Rule 4: In the case of two-, four- and sixfold 
ordinary rotational axes, rotation about a direction 
perpendicular to these axes results in a twofold 
colour-reversing rotational axis (or to a colour- 
reversing mirror plane in the case of improper rota- 
tions) except for some special rotation angles for 
which higher symmetry results due to the particular 
symmetry. 

Rule 2 implies that in the particular case of a four- 
or sixfold ordinary axis special rotations (i.e. 0 = 
2~r/u, u =8 or 12, respectively) create an eight- or 
12-fold colour-reversing axis, respectively. Therefore, 
the superposition of ordinary point groups may result 
in noncrystallographic point groups and such groups 
are discussed in the following paper (Vlachavas, 
1984). Here it is sufficient to notice that the symbolism 
of these groups follows the notation scheme of the 
senior crystallographic point groups. Also, we must 
mention that the 12-fold rotation and rotoinversion 
axes are designated for clarification by a line under- 
neath their symbols. 
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Abstract 

Lists of 8- and 12-fold two-coloured groups consistent 
with zero- and one-dimensional periodic objects are 
given. These groups are derived as extensions of the 
corresponding crystallographic two-coloured groups 
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and are of particular interest because they are the 
only non-crystallographic groups obtained by the 
appropriate superposition of crystallographic point 
or rod groups. 

1. Introduction 

In the previous paper (Vlachavas, 1984) the symmetry 
of the composite obtained by the superposition of 
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222 TWO-COLOURED POINT AND ROD GROUPS 

two identical point groups with common origin was 
investigated. The two component groups, one desig- 
nated white and the other black, were. allowed to 
rotate relative to each other along any axis passing 
through their origin and the resulting symmetry was 
described in terms of antisymmetry (two-coloured 
symmetry) operations. 

One of the main conclusions of the forementioned 
paper is the following rule: u-fold colour-reversing 
rotation axes arise when two ordinary u/2-fold rota- 
tion axes are coincident and the two component point 
groups are rotated relative to each other by 2rr/u (see 
also Pond & Bollmann, 1979). This rule implies that 
in the particular case of a four or sixfold ordinary 
axis special rotations (i.e. O=2zr/u, u = 8  or 12, 
respectively) create an 8- or 12-fold colour-reversing 
axis, respectively. Thus, the superposition of identical 
point groups with common origin may yield non- 
crystallographic point groups of 8- and 12-fold 
colour-reversing symmetry and these groups are 
derived in §2. 

Non-crystallographic rotation symmetry is also 
consistent with one-dimensional periodic objects pro- 
vided that the 8- or 12-fold rotation axis is parallel 
to the periodicity direction (Pond & Bollmann, 1979; 
Vlachavas, 1980). Thus, in the last section of the paper 
we consider two-coloured rod groups containing non- 
crystallographic 8- or 12-fold rotational symmetry. 

The symbols of the non-crystallographic symmetry 
elements considered here are built up according to 
the scheme explained by Vlachavas (1984). Thus, 8 
and 8 denote 8-fold rotation and rotoinversion axes, 
respectively. In the case of 12-fold axes, however, the 
symbol 12 can be misinterpreted because of the possi- 
bility of confusing the 12-fold axis with the two-sided, 
one-coloured rosette group. The 12-fold axis is, there- 
fore, designated by a line underneath the symbol, i.e. 
12. Similarly,__the 12-fold rotoinversion axis is rep- 
resented by 12. 

2. Point groups containing 8- or 12-fold rotational 
symmetry 

2.1. One-coloured (ordinary) point groups 

Initially, the complete list of the ordinary point 
groups containing 8- or 12-fold symmetry operations 
is deduced. For this, combinations among the ele- 
ments 8, 8, 12, 1_~__ and the crystallographic symmetry 
elements must be considered. The procedure for 
determining these combinations is similar to that 
yielding the 32 crystallographic point groups. Thus, 
applying the method of conventional crystallography 
(see e.g. Buerger, 1963), it is found that only combina- 
tions with two-fold rotational axes and mirror planes 
are permissible. Working on these lines the one- 
coloured point groups of 8- or 12-fold symmetry were 
derived and are given in the first column in Tables 1 
and 2. 

Table 1. Antisyrnmetry point groups containing an 
ordinary or colour-reversing 8-fold axis 

Ordinary Grey Black-white 
groups groups groups 

8 81' 8' 

8/m 8 / m l '  8 ' /m 8/rn' 8 ' /m'  
8ram 8mm l' 8' mm' 8rn' m ' 
8rn2 8rn21' 8' m'2 8' rn2' 8rn'2' 
822 8221' 8'22' 82'2' 

8 / m m m  8 / m m m l '  8 /m 'm 'm '  8 ' /mmm'  8 /mm'm '  
8 /m 'mm 8'/m'rn'rn 

Table 2. Antisymrnetry point groups containing an 
ordinary or colour-reversing 12-fold axis 

Ordinary Grey Black-white 
groups groups groups 

12 121' 12' - -  , 
12 121 12' 

12/m 1 2 / m l '  12/m'  12' /m 12'/m' 
12ram 12ram i' 12 m ' m ' 12'ram' 
12m2 12m21' 12m'2' 12'm2' 12'm'2 
1222 12221' 122'2' 12'22' 

12/mmm 12/mmml '  12'/mmm' 12'/m'mm' 12/m'ra'm' 
12/m'mm 12/mm'm'  

The new symbolism is built up on the following 
principles: each symbol gives from one to three sym- 
metry elements which lie along special directions. 
These directions are: (i) the principal direction coin- 
cident with the non-crystallographic symmetry axis; 
(ii) the secondary direction perpendicular to the prin- 
cipal axis; and (iii) a direction which is also perpen- 
dicular to the principal axis and cuts the secondary 
axis at 22.5 ° (for the 8-fold groups) or 15 ° (for the 
12-fold groups). 

2.2. Two-coloured point groups 

Having deduced the ordinary point groups we turn 
our attention to the complete enumeration of the 
corresponding grey and black-white point groups. 
This is carried out by employing the procedure pro- 
posed by Boyle (1969) for the construction of non- 
crystallographic two-coloured groups. 

The basic principle of Boyle's procedure is the 
classification of the 32 ordinary point groups into 
families of 'halving subgroups' (i.e. subgroups which 
have half as many elements as the point group in 
question). The construction of non-crystallographic 
antisymmetry groups requires the extension of these 
'family trees' downwards or the establishment of new 
ordinary groups without halving subgroups. In the 
particular case considered here, the 8- and 12-fold 
classes belong to the CI and 6"3 families, respectively, 
and, therefore, the families are extended downwards. 
This is shown in Fig. 1, which is based on the corre- 
sponding diagrams given by Boyle (1969), but where 
the Hermann-Mauguin symbols are given instead of 
the SchSnflies notation and the 8- and 12-fold 
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ordinary groups are included. The horizontal rows 
contain groups of the same order and adjacent rows 
differ in order by a factor of two. The tie lines relate 
a group G to its halving subgroups H above and the 
groups of which it is halving subgroup below. 

As has been shown by Boyle (1969), for any 
ordinary point group G there exists a grey group M 
given by M = G + G 1' (where 1' is the colour-identity 
operation) and a number of black-white point groups. 
The latter are defined by M = H + ( G - H ) I ' ,  where 
H is a halving subgroup of G, and ( G - H )  means 
the set of elements of G that do not belong to H. 
Thus, each tie line in Fig. 1 defines a black-white 
group. The lines connecting crystallographic point 
groups correspond to crystallographic black-white 
groups found by Tavger & Zaitsev (1956). The rest 
of the tie lines correspond to the non-crystallographic 
black-white point groups of 8- and 12-fold symmetry 
(Tables 1 arid 2). 

3. 8- and 12-fold rod groups  

3.1. Ordinary rod groups 

A figure without singular points and planes but 
with a singular axis is called a rod and the singular 
axis in it is called the axis of the rod. In addition to 
the translational axis, simple rotation, rotoinversion 
and screw axes of any order may coincide with the 
axis of the rod. The principle for the derivation of 

one-coloured symmetry groups of rods is based on 
the fact that rods cannot have inclined axes or sym- 
metry planes, since these would give rise to several 
rod axes (by definition a rod can have only one 
singular or special axis). Hence, in order to derive all 
groups of rod symmetry only the types of symmetry 
applicable to figures with a singular point are used. 
Therefore, translational axes, screw axes or glide- 
reflection planes are located along the axis of the rod. 
Additional derivative symmetry elements (centres of 
symmetry, mirror planes and twofold axes perpen- 
dicular to the rod axis, and mirror-rotation axes 
coinciding with the axis of the rod) can arise. The 
translation symmetry for a rod is described by the 
one-dimensional net, i.e. the primitive one- 
dimensional lattice. 

It is evident from the considerations above that the 
8- or 12-fold axis must coincide with the rod axis. It 
is, thus, necessary to add the 8- or 12-fold point 
symmetry elements to the translation to obtain the 
possible rod groups. Hence, the screw axes corre- 
sponding to 8- or 12-fold rotations must initially be 
determined. These screw axes are characterized by 
the elementary angle tp = 3600/8=45 ° or 360°/12 = 
30 ° , respectively, and also by the screw translation 
~" = ( j / n ) t ,  where t is the elementary translation along 
the axis of the rod, n is equal to 8 or 12 and j is the 
pitch component of the screw axis. The screw axes 
isogonal with the 8- and 12-fold rotation axes are 
given below, grouped in pairs of enantiomorphic 

1 

1 2 m 

2/m 222 2mm 4 

4/m 422 4ram mmm Z2m 8 8 

4/mmm 8/m 8ram 8m2 822 

8/mmm 
(a) 

3 

32 3m 6 6 

6/mmm 12/m 12mm 12m2 1222 

12/mmm 

(b) 

Fig. 1. The 'family trees' of (one-coloured) point symmetries used for the construction of two-coloured non-crystallographic point 
groups of 8- and 12-fold symmetry: (a) .the C~ family, (b) the 6"3 family. 
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Table 3. Antisymmetry rod groups containing an 8-fold 
symmetry axis 

Rod-group symbol 

One- Two-coloured groups 
coloured 
groups Black-white groups 

Grey Without 
No. groups antitranslation 

1 #8 #81' #8' 
2 #8, #811' #8'1 
3 :82 #821' #8~ 
4 #83 :831' #8~ 
5 #8 4 #841' #8~ 
6 :85 #8~1' hS~ 
7 #86 #861' #8~, 
8 #87 #871' #8~ 
9 #8 #81' #2' 

l0 #8/m #8/m1' #8'/m,#8/m', 
#8'/m' 

11 #84/m #84/m1' #8'4/m,#84/m', 
#SUm' 

12 #8ram #8mini' #8'mm', #8m' m' 
13 #8cc #8cc1' #8'cc', #8c'c' 
14 # 8 4 r a c  #84mc 1' #84m'c', #8~rnc', 

#8'4m' c 
15 #822 #8221' #8'22', #82'2' 
16 #8~22 #8,221' #8122', :8,2'2' 
17 #8222 #82221' #8~22', #822'2' 
18 #8322 #8322 I' #8~22', #832'2' 
19 #8422 #84221' #8~22', #842'2' 
20 #8522 #85221' :8~22', #852'2' 
21 #8622 #86221' #8~22', #862'2' 
22 #8722 #87221' #8~22', #872'2' 
23 #82m :82rn 1' #8'2m', :8'2'm, 

#82'm' 
24 #82c #82c1' #8'2c', #8'2'c, 

:82'c' 
25 #8/ mmm #81mmml' #8/m'm'm', #8'lmmm', 

#81mm' m', #81m'mm, 
#8'/ m' mrn' 

26 #84/mcm #84/mcml' #84/m'c'm', #8~/mcm', 
#8'4/me'm, #84/mc'm', 
:84/m'cm, #8'41 m'cm', 

#8'a/ m' c' m 
27 #8/mcc #8/mccl' #8/m'c'c', #8'/mcc', 

:8 /  mc' c', 
#8/ m' cc, #8'/ m' cc' 

With 
antitranslation 

/ 8  
/ 8 ,  
#'82 
# % 
#'84 
#'8s 
#'86 
/ 87  
#'2 

#'8/m 

#'8rim 

#'8mm 
#'8cc 

#'84mc 

/822  
#'8,22 
#'8222 
#'8322 
#'8422 
#'8S22 
#'8622 
#'8722 
#'82m 

#'Sac 

fl'8/ mmrn 

#'84/ mcm 

#'8/ mcc 

symmetry (except the  neutral axes): 

8-fold screw axes: (81, 87), (82, 86), (83, 85), 84 

12-fold screw axes: (121, 1213, (122, 1210), (123, 129), 

(124, 128) ,  1(~5, 127),  126. 

When the operations of the 8- and 12-fold point 
symmetry and translation (including screw axes and 
glide planes) are taken into account, the one-coloured 
rod groups can be derived; they are listed in Tables 3 
and 4 under the heading 'one-coloured groups'. In 
these tables the symbol of the one-dimensional lattice 
is given first; the letter or number in the second, third 
and fourth positions of the symbol indicate that a 
particular symmetry element coincides with the coor- 

Table 4. Antisymmetry rod groups containing a 12-fold 
symmetry axis 

Rod-group symbol 

One- Two-coloured groups 
coloured 
groups Black-white groups 

Grey Without With 
No. groups antitranslation antitranslation 

i #12 #121' #!2' / 1 2  
2 #12, #121 1' #12', #'12, 
3 #122 # 122 !' #!2~ #'L~2 
4 # 12~ # 1_2_32 I' #12~ #'1232 
5 #124 #1241' #12~ #'!24 
6 ~12~ ~ l~s 1' :12~ #q_~2 
7 #126 # I_.261 ' #12:, #'~6 
8 #127 # 127 I' #12 ~ #'127 
9 #~8 # 128 I' #12~ #'128 

10 #129 #1291' #12~ #q29 
I l # 12,o # I....22,o I ' # 12',o #'12,o 
12 #12,, #12,,I' #12',, /12,, 
13 #1_22 :121' :12' /12 
i 4 # !2 /m f112/m 1' #i2'/m, fll2/m', #'12/m 

#12'lm' 
15 #126/m # 126/m I' #12~/rrg # 1_226/m ', #'126/m 

: !26/m'  
16 #12ram #12mml' #12'mm',#12m'm' #'12mm 
17 # 12cc # 12cc1' :12'cc', #12c'c' :'12cc 
18 # 126mc # 126mc 1 ' # 126m'c' ' # 1_.22'6mc', #'126m c 

#12'6ra' c 
19 #1222 # 12221' # 12'22', # 122'2' /1222 
20 #12,22 #12,221' #12',22',#12,2'2' #'12122 
2 ! #12222 # 122221' # 12 ~22', # 1222'2' #'1_22222 
22 #12322 # 123221 ' # 12~22', # 1_~22'2' #'1 _~222 
23 # 12422 # 124221' # 12~22', : 1242'2' /12422 
24 # 12s22 : 12s221' : 12 ~22', : 12s2'2' #'1_~222 
25 # 12622 # 12622 I' # 12~,22', # 1262'2' #'  12622 
26 #12722 #127221' : 12.~22', : 1272'2' :'12722 
27 # 12822 # 128221' # 12 ~22', # 12s2'2' #'12s22 
28 #12922 : 12o22 !' # 12~22', # 1292'2' #'12922 
29 # 12to22 f112,o221' # 12',o22', # 12,o2' 2 ' #,i2,o22 
30 #12,122 :121,221' #12'lt22',fl12,,2'2' #'J_21,22 
31 # 122m : 122m I' : 12'2 m', # l__?'2'ra, #'122m 

#122'm' 
. . . . .  _ _  

32 :122c # 122c I' # 12'2c', : 12'2'c, #'122c 
:122'c' 

33 # 12/mmm #!2/ ramm I' #12/ra'ra'm', :'12/mmm 
# 12'/mmra', 
# 12/mm'm', 
# l_2/ m' mm, 
#127m'mm' 

34 #1261mcm #12d rectal' #12dm'c'm', #'1261mcrn 
# 12'6/mcm', 
#12'd mc' m, 
# 126/mc'm', 
f1126[ m' cm, 
# 12'6/m'cm', 
# 12'6/m'c'm 

35 # 12/mcc # 12/race 1' : 12/m'c'c', #'12/mcc 
#12'/ mcc', 
#12J mc'c', 
#12/ m ' cc, 
: 12'/m'cc' 

dinate axes a, b and the bisector of the angle between 
the axes b and c. If no symmetry axis or normal to 
symmetry plane coincides with the coordinate axis 
the corresponding position is left vacant (short sym- 
bol). The coordinate axis a is directed along the rod 
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axis, and the axes b and c are orthogonal to the axis 
a and make a 22.5 or 15 ° angle with each other, 
depending on the class of the rod symmetry (8- or 
12-fold, respectively). 

3.2. Two-coIoured rod groups 

The two-coloured rod groups containing an 8- or 
12-fold axis are presented in Tables 3 and 4, respec- 
tively. The first column in these tables gives the sym- 
bols of the one-coloured rod groups derived above. 
The second column gives the symbols of the grey 
(neutral) groups obtained by additing the anti-identity 
operation 1' to the generators of the one-coloured 
groups (Belov & Tarkhova, 1956). All the grey groups 
can accordingly be considered as extensions of the 
classical groups by means of the group 1'. Thus, if we 
denote by C and D the classical and two-coloured 
rod groups we have that D =  C<~)I' for the grey 
groups. 

The third column of the tables gives the symbols 
of the black-white groups D isomorphic with the 
one-coloured groups C listed in the first columns of 
the tables. These D groups, which do not contain any 
antitranslation, may be regarded as extensions of the 
classical subgroups C * c  C of index 2 by means of 
the antisymmetry point groups G' or antisymmetry 
groups by modulus G r', i.e. as direct, semidirect and 
quasi-direct products (see e.g. Shubnikov & Koptsik, 
1974): 

D = C*(~G', D = C*®G' or D = C*QG r'. 

Thus, for example,/ /8 '=/~4~2' , /~ 12m'm' =/~ 12®m' 
and/~8' /m =/~4/m G8'(mod 2). 

Finally, the two-coloured rod groups in the last 
column of Tables 3 and 4 contain antitranslations z'. 
These groups are obtained from the one-coloured rod 
groups by additing to the generators of the translation 
subgroup T c C an antitranslation generator z'. 
Groups of this type may thus be considered as 
extensions of the classical groups C* = TG by means 
of the group by modulus z'(mod 2z)={1, r'}. 
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Abstract 
Results of the experimental study of X-ray diffraction 
under specular reflection conditions are presented. 
The experimental arrangement which permits the 
measurement of the intensity of a specularly reflected 
diffracted wave with respect to its exit angle to the 
crystal surface is described. Experimental confirma- 
tion of the theory [Afanas'ev & Melkonyan (1983). 
Acta Cryst. A39, 207-210] has been obtained for 
silicon crystals. The angular distributions of the 
specularly reflected and diffuse intensities have also 
been studied. The experiments showed the diffuse 
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scattering to be primarily scattering at the back edge 
of the sample. 

The diffraction under specular reflection conditions 
occurs when an X-ray beam is directed into a crystal 
at a small glancing angle, ¢, of incidence comparable 
with the critical angle of specular reflection and, 
simultaneously, if the conditions of Laue case diffrac- 
tion for the planes normal to the surface are met. 

As was shown earlier (Marra, Eisenberger & Cho, 
1979; Afanas'ev & Melkonyan, 1983), two specularly 
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